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Abstract

This paper proposes a novel approach to motion cap-
ture from multiple, synchronized video streams, specifically
aimed at recording dense and accurate models of the struc-
ture and motion of highly deformable surfaces such as skin,
that stretches, shrinks, and shears in the midst of normal fa-
cial expressions. Solving this problem is a key step toward
effective performance capture for the entertainment indus-
try, but progress so far has been hampered by the lack of
appropriate local motion and smoothness models. The main
technical contribution of this paper is a novel approach to
regularization adapted to nonrigid tangential deformations.
Concretely, we estimate the nonrigid deformation parame-
ters at each vertex of a surface mesh, smooth them over
a local neighborhood for robustness, and use them to reg-
ularize the tangential motion estimation. To demonstrate
the power of the proposed approach, we have integrated it
into our previous work for markerless motion capture [9],
and compared the performances of the original and new
algorithms on three extremely challenging face datasets
that include highly nonrigid skin deformations, wrinkles,
and quickly changing expressions. Additional experiments
with a dataset featuring fast-moving cloth with complex and
evolving fold structures demonstrate that the adaptability of
the proposed regularization scheme to nonrigid tangential
motion does not hamper its robustness, since it successfully
recovers the shape and motion of the cloth without overfit-
ting it despite the absence of stretch or shear in this case.

1. Introduction

The most popular approach to motion capture today is to
attach reflective markers to the body and/or face of an ac-
tor, and track these markers in images acquired by multiple
calibrated video cameras [3]. The marker tracks are then
matched, and triangulation is used to reconstruct the corre-
sponding position and velocity information. The accuracy
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of any motion capture system is limited by the temporal and
spatial resolution of the cameras, and the number of reflec-
tive markers to be tracked, since matching becomes diffi-
cult with too many markers that all look alike. On the other
hand, although relatively few (say, 50) markers may be suf-
ficient to recover skeletal body configurations, thousands
(or even more) may be needed to accurately recover the
complex changes in the fold structure of cloth during body
motions [23], or model subtle facial motions and skin defor-
mations [4, 9, 16, 17]. Computer vision methods for mark-
erless motion capture (possibly assisted by special make-up
or random texture patterns painted on a subject) offer an
attractive alternative, since they can (in principle) exploit
the dynamic texture of the observed surfaces themselves to
provide reconstructions with fine surface details and dense
estimates of nonrigid motion. Such a technology is indeed
emerging in the entertainment and medical industries [1, 2].
Several approaches to local scene flow estimation have also
been proposed in the computer vision literature to handle
less constrained settings [5, 13, 15, 18, 20, 21], and re-
cent research has demonstrated the recovery of dense hu-
man body motion using shape priors or pre-acquired laser-
scanned models [6, 22]. Despite this progress, a major
impediment to the deployment of facial motion capture
technology in the entertainment industry is its inability (so
far) to capture fine expression detail in certain crucial ar-
eas such as the mouth, which is exacerbated by the fact
that people are very good at picking unnatural motions and
“wooden” expressions in animated characters. Therefore,
complex facial expressions remain a challenge for exist-
ing approaches to motion capture, because skin stretches,
shrinks, and shears much more than other materials such as
cloth or paper, and the local motion models typically used in
motion capture are not adapted to such deformations. The
main technical contribution of this paper is a novel approach
to regularization specifically designed for nonrigid tangen-
tial deformations via a local linear model. It is simple but,
as shown by our experiments, very effective in capturing
extremely complicated facial expressions.

1



1.1. Related Work

Three-dimensional active appearance models (AAMs)
are often used for facial motion capture [12, 14]. In this ap-
proach, parametric models encoding both facial shape and
appearance are fitted to one or several image sequences.
AAMs require an a priori parametric face model and are,
by design, aimed at tracking relatively coarse facial mo-
tions rather than recovering fine surface detail and subtle
expressions. Active sensing approaches to motion capture
use a projected pattern to independently estimate the scene
structure in each frame, then use optical flow and/or sur-
face matches between adjacent frames to recover the three-
dimensional motion field, or scene flow [10, 24]. Although
qualitative results are impressive, these methods typically
do not exploit the redundancy of the spatio-temporal infor-
mation, and may be susceptible to error accumulation over
time due to the concatenation of local motion fields [19]. In
addition the estimated motion may be erroneous because the
projected patterns typically make accurate tangential track-
ing difficult. Several passive approaches to scene flow com-
putation have also been proposed [5, 13, 15, 18, 21]. How-
ever, these approaches suffer from two limitations: First,
they have so far mostly been restricted to simple motions
with little occlusion. The second limitation is again accu-
mulating drift. We have recently proposed a mesh-based
motion capture algorithm [9] that does not suffer from ac-
cumulation errors, and handles complicated surface defor-
mation. However, it assumes locally rigid motion and is
not designed for nonrigid deformations with much stretch-
ing, shrinking or shearing, such as those common in fa-
cial expressions. In general, accurate facial motion cap-
ture remains an unsolved challenge for existing approaches
to motion capture. First, many algorithms focus more on
good visualization than accurate motion recovery. This
makes sense in cases such as full-body motion capture,
where clothes may not have enough texture to yield high-
resolution motion and, on the other hand, cloth animation is
often visually plausible even when the motion is not physi-
cally accurate. The situation is very different in facial mo-
tion capture, since people are, as noted earlier, very good
at picking unnatural expressions. Second, motion-capture
algorithms are often simply not designed for handling non-
rigid tangential motions. For example, a locally rigid mo-
tion model, although perfectly acceptable for capturing the
motion of paper and cloth, may smooth out all the details of
a facial expression. The algorithm proposed in [4] captures
fine-scale facial geometry and motion, but it focuses mostly
on the plausible synthesis of expression wrinkles. It also
requires a user to apply paint on a face at expected wrinkle
locations before-hand, which is time consuming and may
not work for unexpected facial expressions (see Fig. 3 for
example, with wrinkles on a person’s neck).

The challenge in our work is the development of a smart

regularization term that allows severe nonrigid deformation
but is also robust especially where texture information be-
comes unreliable due to fast motion, self-occlusions, poor
image texture, etc. The Laplacian operator used for regu-
larization by several current algorithms [6, 9, 15, 18] is too
weak to handle complicated surface deformations in chal-
lenging sequences such as those shown in Fig. 5. A tangen-
tial rigidity constraint has been shown to be very effective
in such cases [9], but it does not work well with intricate fa-
cial expressions whose deformation contains a lot of stretch,
shrink and shear. Our solution to this problem is to model
and estimate in a stable fashion the tangential nonrigid de-
formation. More concretely, given a mesh model in a certain
frame, we first estimate the tangential nonrigid deformation
at each vertex by projecting its neighboring vertices onto
the tangent plane and computing a 2D linear transformation
that maps the projected vertices from the reference frame
to the current one. Second, we smooth these deformation
parameters over a local neighborhood for robustness, which
is especially important in surface areas with unreliable im-
age information (see Fig. 6 for the effects of smoothing).
The estimated nonrigid deformation is then used to define
a novel adaptive tangential rigidity term. Our method is
very simple yet works well in various challenging cases. In
reality, of course, the skin has a complicated layered struc-
ture, and its physical behaviour results from the interaction
between those layers, but a simple per-vertex linear defor-
mation model has been proven effective in our experiments.

To demonstrate the power of the proposed approach, we
have integrated it into our previous work for markerless mo-
tion capture [9], dubbed FP08 in the rest of this presenta-
tion. We have tested our implementation on three real face
datasets with complicated, fast-changing expressions, and
show in Section 4 that it successfully and accurately cap-
tures intricate facial details in each case. Additional ex-
periments with a dataset featuring fast-moving cloth with
complex and evolving fold structures demonstrate that the
adaptability of the proposed regularization scheme to non-
rigid tangential motion does not hamper its generality or
robustness, since it successfully recovers the shape and mo-
tion of the cloth without overfitting it despite the absence of
stretch or shear in this case. We compare in Section 4 our
results with those obtained by the original FP08 algorithm,
and also perform some qualitative evaluations to show the
effects of the key components in our algorithm. The rest of
the article is organized as follows. Section 2 briefly reviews
the FP08 algorithm proposed in [9] for completeness. Sec-
tion 3 explains how to model and estimate tangential non-
rigidity, then use it in the motion capture algorithm, which
is the main contribution of the paper. We present our exper-
imental results in Sect. 4, then conclude the paper with a
discussion of future work in Sect. 5.
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Figure 1. The local rigid motion can be decomposed into the tan-
gential and normal components (reproduced with permission from
[9]). In this paper, we also model nonrigid surface deformation in
the tangent plane from the reference frame to control tangential
rigidity of a surface such as stretch, shrink, and shear.

2. The FP08 Algorithm

We briefly review the algorithm proposed in [9] in this
section. The instantaneous geometry of the observed scene
is represented by a polyhedral mesh with fixed topology.
An initial mesh is constructed in the first frame by using
the publicly available PMVS software for multi-view stereo
(MVS) [8] and Poisson surface reconstruction software [11]
for meshing, then its deformation is captured by tracking its
vertices {v1, . . . , vn} over time. The goal of the algorithm
is to estimate in each frame f the position vf

i of each vertex
vi (from now on, vf

i will be used to denote both the vertex
and its position). Note that each vertex may or may not be
tracked at a given frame, including the first one, allowing
the system to handle occlusion, fast motion, and parts of the
surface that are not visible initially. The three steps of the
tracking algorithm –local motion estimation, global surface
deformation, and filtering– are detailed in the following sec-
tions.

2.1. Local Rigid Motion Estimation

At each frame, the FP08 algorithm approximates a local
surface region around each vertex by its tangent plane, and
estimates the corresponding local 3D rigid motion with six
degrees of freedom. The algorithm uses two techniques to
improve robustness and accuracy. The first one is motion
decomposition: As illustrated by Fig. 1, among six degrees
of freedom, three parameters encode structure or normal in-
formation (depth and surface normal), while the remaining
three contain tangential motion information (translation in
the tangent plane and rotation about the surface normal).
Instead of directly estimating all six parameters from the
beginning, which is susceptible to local minima, the normal
parameters are first found by optimizing a structure pho-
tometric consistency function, then all the six parameters
are refined by optimizing a motion photometric consistency
function. The second key to robustness is an expansion
strategy that makes use of the spatial consistency of local
motion information.

2.2. Global Surface Deformation

Based on the estimated local motion parameters, the
whole mesh is then deformed by minimizing the sum of
three energy terms:
∑

i

|vf
i − v̂f

i |2 + η1|[ζ2Δ2 − ζ1Δ]vf
i |2 + η2Er(v

f
i ). (1)

The first data term simply measures the squared distance
between the vertex position vf

i and the position v̂f
i esti-

mated by the local estimation process. The second term
uses the (discrete) Laplacian operator Δ of a local parame-
terization of the surface in vi to enforce smoothness [7] (the
values ζ1 = 0.6 and ζ2 = 0.4 are used in all the experi-
ments of [9] and in the present paper as well). This term
is very similar to the Laplacian regularizer used in many
other algorithms [6, 15, 18]. The third term is also for regu-
larization, and it enforces (local) tangential rigidity with no
stretch, shrink or shear. The total energy is minimized with
respect to the 3D positions of all the vertices by a conjugate
gradient method.

2.3. Filtering Out Erroneous Local Motion

After surface deformation, the residuals of the data and
tangential rigidity terms are used to filter out erroneous mo-
tion estimates. Concretely, these values are first smoothed,
and a (smoothed) local motion estimate is deemed an outlier
if at least one of the two residuals exceeds a given thresh-
old. The three steps are iterated a couple of times to com-
plete tracking in each frame, the local motion estimation
step only being applied to vertices whose parameters have
not already been estimated or filtered out. Please see [9] for
more details of the algorithm.

2.4. Adapting FP08

In addition to the new tangential rigidity term explained
in the next section, we have made two (minor) modifications
to the local rigid motion estimation step (Sect. 2.1) mainly
to improve the visual quality of reconstructed meshes. First,
we have observed that the surface obtained after motion op-
timization is often noisier than the one obtained from struc-
ture optimization. This is probably because the shading and
shadows of an object might change from frame to frame,
making some of the texture information unreliable in the
motion estimation step where different frames must be com-
pared. Therefore, we perform the structure optimization
once again after the motion optimization to refine the struc-
ture parameters while fixing the remaining motion param-
eters (see [18] for a similar procedure). The second mod-
ification is the removal of an error term in the local struc-
ture and motion optimization, which penalizes the devia-
tion of the parameters from their initial guesses. We have
observed that the proposed system is stable without such a



term that may simply add bias to the data information. Al-
though differences resulting from these two modifications
are small, their effects on noise reduction is noticeable in
certain places. 1

3. A New Regularization Scheme

As mentioned before and shown in our experiments later,
the tangential rigidity constraint in Eq. (1) is too strict for
facial motion capture since it does not allow skin deforma-
tions including stretch, shrink and shear. Regularizing the
tangential motion is, on the other hand, a key factor in han-
dling complicated surface deformations (see Fig. 5 for ex-
amples). Thus, instead of assuming static edge lengths as
in [9], we propose in this paper to estimate the nonrigid
tangential deformation from the reference frame to the cur-
rent one at each vertex, and use that information to compute
target edge lengths. The estimation of the tangential defor-
mation is performed at each frame before starting the mo-
tion estimation, and the parameters are fixed within a frame.
The actual estimation consists of two steps –independent
estimation at each vertex, and smoothing over local surface
neighborhood– that are detailed in the next sections.

3.1. Estimating Nonrigid Surface Deformation

We approximate the nonrigid tangential surface defor-
mation from the reference frame to the current one by a 2D
linear transformation in the tangent plane of each vertex (the
origins of the corresponding coordinate frames are aligned,
avoiding the need for a translation term). Concretely, given
a vertex vf

i at frame f , the adjacent vertices are first pro-
jected onto the tangent plane at vf

i (Fig. 2, left). We attach
an arbitrary 2D coordinate frame to the tangent plane by
aligning its origin with vf

i , and use xf
i (j) to denote the posi-

tion of the projection of each neighbor v f
j in this coordinate

frame. After performing the same projection procedure at
the reference frame f0, we solve for a linear deformation
Af

i that maps xf0
i (j) onto xf

i (j) for every adjacent vertex
vj in N(vi):

xf
i (j) = Af

i xf0
i (j).

Here, Af
i is a 2 × 2 matrix, xf

i (j) is a vector in R
2, and

the above equation adds two constraints for each neigh-
bor. Since each vertex has at least two (and typically more)
neighbors, we compute Af

i by solving a linear least squares
problem.

3.2. Smoothing Nonrigid Deformation Parameters

The second step is to smooth the nonrigid deformation
parameters over the surface for robustness, based on the as-
sumption that the nonrigid surface deformation is spatially

1See videos on our project website http://www.cs.
washington.edu/homes/furukawa.

smooth, and nearby vertices follow similar deformations. 2

More concretely, we smooth nonrigid deformation parame-
ters Af

i over the surface instead of allowing each vertex to
have independent values. However, the deformation param-
eters for adjacent vertices are expressed in different coor-
dinate frames attached to different tangent planes, and we
thus need to align these coordinate frames. Given a pair
of adjacent vertices vf

i and vf
j in frame f , we simply as-

sume that their tangent planes are identical, and first es-
timate the 2D rotation matrix Rf

ij that aligns the vectors

xf
i (j)− xf

i (i) with xf
j (j)− xf

j (i), then the translation vec-

tor tfij that maps xf
i (i) onto xf

j (i) (Fig. 2, center). Note
that we are not estimating a deformation but simply align-
ing coordinate frames, and just need a 2D rigid transforma-
tion (rotation and translation). Of course, the registration is
not perfect but, again, this is not a critical issue. Assuming
that nonrigid tangential deformation is consistent between
adjacent vertices, we expect the following equations to hold
for any 2D point x:

Rf
ij(A

f
i x) + tfij = Af

j (Rf0
ij x + tf0

ij ).

The left side of this equation characterizes the position x of
a point that first follows the deformation around vertex v i at
the reference frame f0, and is then mapped onto the other
coordinate frame at frame f . Its right side characterizes the
position x of a point that is first mapped onto the second
coordinate frame at the reference frame f0, then follows the
deformation about vertex vj (Fig. 2, right). This equation
can be rewritten as

(Rf
ijA

f
i −Af

j Rf0
ij )x = Af

j tf0
ij − tfij ,

and since it should hold for all x, and Af
j tf0

ij − tfij should be
very close to 0 by construction, we obtain the (approximate)
constraint

Af
i = RfT

ij Af
j Rf0

ij .

This relation is finally used to smooth each vertex by repeat-
ing 8 times the following local averaging operation:

Af
i ←

1
1 + |N(vi)| [A

f
i +

∑

vj∈N(vi)

RfT ijA
f
j Rf0

ij ].

3.3. Adaptive Tangential Rigidity Term

Given a vertex vf
i and its nonrigid deformation parame-

ters Af
i at frame f , the (3D) length ef

ij of an edge between

vf
i and its neighbor vf

j (vj ∈ N(vi)) should be

êf
ij = ef0

ij

|Af
i xf0

i (j)|
|xf0

i (j)| , (2)

2The assumption is reasonable in many cases where external forces to
the surface stem from a few locations, yielding locally consistent nonrigid
deformations, e.g., facial expressions governed by a few active muscles.
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Figure 2. We approximate the nonrigid deformation around each vertex by a 2D linear transformation in its tangent plane. Left: estimation
of the deformation parameters from the reference frame f0 to the current one f . Center: alignment of different coordinate frames between
neighboring vertices. Right: the relationship between adjacent vertices in two different frames, which is used to smooth deformation
parameters.

where ef0
ij is the original (3D) edge length in the reference

frame f0, and the rest of the term measures the amount of
stretch and shrink from frame f0 to f . (Here, as usual, we
have assumed that local coordinate system was centered in
vf

i ). Thus, our tangential rigidity term Er(v
f
i ) for a vertex

vf
i in the global mesh deformation step (1) is given by

∑

vj∈N(vi)

max[0, (ef
ij − êf

ij)
2 − τ2], (3)

which is the sum of squared differences between the actual
edge lengths and those predicted by Eq. (2). The term τ is
used to make the penalty zero when the deviation is small
so that this regularization term is enforced only when the
data term is unreliable and the error is large. In all our ex-
periments, τ is set to be 0.2 times the average edge length
of the mesh at the first frame.

4. Experimental Results

We have implemented the proposed method and tested
it using three real face sequences (face1, face2 and face3)
kindly provided by Image Movers Digital and one cloth
sequence (pants), kindly provided by R. White, K. Crane
and D.A. Forsyth [23]. In each case, the data consists of
image streams from multiple synchronized and calibrated
cameras. Sample input images are shown in Fig. 3, and Ta-
ble 1 provides some characteristics and choices of parame-
ters for each dataset. Note that all the other parameters are
fixed and the same for all the datasets. The pants and face1
videos contain fast and complex motions but without much

Table 1. Characteristics of the datasets. Nv, Nc, Nf , Np, T , η1

and η2 respectively denote the number of vertices in a mesh, the
number of cameras, the number of frames, the number of effec-
tive pixels (an object appears small in some datasets), an average
running time of the algorithm per frame in minutes, and weights
associated with two regularization terms in (1).

Nv Nc Nf Np T η1 η2

pants 8652 8 173 0.2M 0.42 10 10
face1 39612 10 325 0.3M 1.6 5 10
face2 75603 10 400 0.3M 2.2 5 10
face3 75603 10 430 0.3M 2.1 5 10

stretch nor shrink, and the face2 and face3 sequences con-
tain complicated facial expressions with highly nonrigid de-
formations, where an accurate estimation of tangential de-
formations is necessary for successful motion capture.

As stated in our previous paper [9], which is the basis
of our implementation, the publicly available PMVS soft-
ware [8] and a meshing software [11] are used to initialize
a mesh model in the first frame. For the three face datasets,
we have manually added a hole at the mouth to the meshe,
since its topology is fixed in FP08. All the algorithms are
implemented in C++ and a dual quad-core 2.66GHz linux
machine has been used for the experiments.

Figure 3 shows, for each dataset, a sample input im-
age, a reconstructed mesh model, the estimated motion,
and a texture-mapped model for two frames with interest-
ing structure and/or motion. 3 The motion information at

3See our project website for videos http://www.cs.
washington.edu/homes/furukawa.
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Figure 3. From left to right, a sample input image, reconstructed mesh model, estimated motion, and a texture mapped model for one frame
with interesting structure/motion for each dataset. The right two columns show the results in another interesting frame. See text for details.

each vertex is illustrated by a colored line segment that con-
nects its 3D locations from the previous frame (red) to the
current (green). Textures are mapped onto the mesh by aver-
aging the back-projected textures from every visible image
in every tracked frame as in [9]. This is an effective method
for qualitative assessment, since the texture will only appear
sharp when the estimated structure and motion information
are accurate throughout the sequence. As shown by the
figure, our algorithm successfully recovers various facial
structure and deformation including highly nonrigid skin
deformation with complicated wrinkles at the neck, cheeks,
and lips. The computed model textures also appear sharp

excluding exceptional places such as eyes for face datasets
and the inner thigh region for the pants dataset, where track-
ing is very difficult. The pants videos form an interesting
dataset for our algorithm in two respects: First, since the
cloth does not stretch nor shrink much, tangential deforma-
tions needs not be considered, and one may fear that our
approach will overfit the deformations and create unneces-
sary wrinkles. A shown by Figure 3, this is not the case, and
our algorithm successfully captures accurate surface defor-
mation, demonstrating the robustness of the system. Sec-
ond, due to occlusions between inner thighs, the initial mesh
model is not accurate there, causing tracking problems for
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Figure 4. Comparison of the proposed algorithm with FP08 [9]. The proposed algorithm can handle highly nonrigid surface deformations
as well as surface regions with inaccurate mesh initialization. See texts for details.

FP08 [9] and yielding fake wrinkles due to the strong rigid-
ity constraint, whereas the use of our adaptive tangential
rigidity term avoids such artifacts (top of Fig. 4). Fig-
ure 4 shows qualitative comparisons between the proposed
algorithm and FP08, illustrating (as expected, since it is de-
signed for surfaces that bend but don’t stretch or shear) that
FP08 cannot handle highly nonrigid skin deformations, re-
sulting in mesh collapse, cracks or large artifacts, and track-
ing failures at many vertices. On the other hand, our algo-
rithm succeeds in recovering intricate structures with dense
motion information. We have performed two more compar-
ative experiments to show the effects of the key components
in the proposed algorithm. First, we have run our algorithm
without the adaptive tangential rigidity term of Eq. (3), so
the only regularization term is the Laplacian operator used
in many other algorithms (Fig. 5). It is bit of a surprise that
the system does not have a problem with the top left exam-
ple in the figure, where the surface undergoes complicated
nonrigid deformation, but the motion is slow and the texture
information is still reliable. However, without the adaptive
tangential rigidity term, the algorithm fails at recovering
protruded lips where the structure and occlusions are more
complex. The system also makes gross errors around eyes
due to specular reflections, and on the back side of the fast
moving pants, where many vertices are either not tracked
or contain erroneous local motion estimates. Second, we
have run our algorithm without smoothing the tangential
deformation parameters (Sect. 3.2) to demonstrate the ef-

fectiveness of this smoothing step. Figure 6 shows that the
algorithm without smoothing makes gross errors again at
protruded lips and the back side of the pants where texture
information is unreliable and local motion estimates are er-
roneous.

5. Conclusion and Future Work

We have presented a dense motion capture algorithm
with a novel tangential rigidity constraint that models non-
rigid surface deformation on tangent planes of a surface.
Our experiments show that the algorithm can recover in-
tricate surface structure and deformation such as protruded
lips, facial wrinkles on the cheeks and neck, that existing
algorithms cannot handle. Next on our agenda is to learn a
representation of facial expressions from the reconstructed
high-resolution structure and motion information, then use
it to recover dense motion from new sequences acquired
by one, or a few cameras. This is similar to what AAMs
do, although they have been mostly used for low-resolution
meshes and may not scale well or accurately capture com-
plicated non-linear skin deformations.
Acknowledgments: This paper was supported in part by
the National Science Foundation under grant IIS-0535152,
the INRIA associated team Thetys, and the Agence Na-
tionale de la Recherch under grants Hfibmr and Triangles.
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Figure 5. The adaptive tangential rigidity term proposed in this
paper is key to filtering out erroneous local motion estimates and
keeping the system stable. Without it, the algorithm does not work
in three of these four examples, especially where texture informa-
tion is unreliable. See text for details.
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Figure 6. Smoothing tangential deformation parameters (Sect. 3.2)
is essential for stability, especially at texture-poor regions.
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